Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ethyl 2-(1,2,3,4-tetrahydrospiro[carbazole-3,2'-[1,3]dioxolan]-9-yl)acetate

Philipp M. G. Löffler, Trond Ulven and Andrew D. Bond*

University of Southern Denmark, Department of Physics and Chemistry, Campusvej 55, 5230 Odense M, Denmark Correspondence e-mail: adb@chem.sdu.dk

conceptingence e main das concinstantai

Received 19 February 2009; accepted 1 March 2009

Key indicators: single-crystal X-ray study; T = 180 K; mean σ (C–C) = 0.002 Å; R factor = 0.040; wR factor = 0.112; data-to-parameter ratio = 18.5.

In the title compound, $C_{18}H_{21}NO_4$, the hydrogenated sixmembered ring of the carbazole unit adopts a half-chair conformation. The dioxolane ring and ethylacetate substituent point to opposite sides of the carbazole plane. The ethylacetate substituent adopts an essentially fully extended conformation, and its mean plane forms a dihedral angle of 83.8 (1)° with respect to the carbazole mean plane. The molecules are arranged into stacks in which the carbazole planes form a dihedral angle of 4.4 (1)° and have an approximate interplanar separation of 3.6 Å.

Related literature

For background literature and synthesis details, see: Ulven & Kostenis (2005, 2006). For a related structure, see: Bjerrum *et al.* (2009).

Experimental

Crystal data

N a

h

$C_{18}H_{21}NO_4$	$V = 1583.05 (10) \text{ Å}^3$
$A_r = 315.36$	Z = 4
Aonoclinic, $P2_1/c$	Mo $K\alpha$ radiation
= 10.5533 (4) Å	$\mu = 0.09 \text{ mm}^{-1}$
= 17.3773 (6) Å	$T = 180 { m K}$
= 8.9637 (3) Å	$0.50 \times 0.50 \times 0.10$ mm
$B = 105.629 \ (1)^{\circ}$	

Data collection

Bruker-Nonius X8 APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2003) $T_{min} = 0.847, T_{max} = 0.991$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.112$ S = 1.043851 reflections 25055 measured reflections 3851 independent reflections 3174 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.025$

208 parameters H-atom parameters constrained
$$\begin{split} &\Delta\rho_{\rm max}=0.28~{\rm e}~{\rm \AA}^{-3}\\ &\Delta\rho_{\rm min}=-0.25~{\rm e}~{\rm \AA}^{-3} \end{split}$$

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We are grateful to the Danish Natural Sciences Research Council and the Carlsberg Foundation for provision of the X-ray equipment.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2485).

References

- Bjerrum, J. V., Ulven, T. & Bond, A. D. (2009). *Acta Cryst.* E65, 0579. Bruker (2003). *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2004). *APEX2*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Ulven, T. & Kostenis, E. (2005). J. Med. Chem. 48, 897-900.
- Ulven, T. & Kostenis, E. (2006). Curr. Top. Med. Chem. 6, 1427-1444.

Acta Cryst. (2009). E65, o685 [doi:10.1107/S160053680900748X]

Ethyl 2-(1,2,3,4-tetrahydrospiro[carbazole-3,2'-[1,3]dioxolan]-9-yl)acetate

P. M. G. Löffler, T. Ulven and A. D. Bond

Comment

The title compound is useful as an intermediate in the synthesis of antagonists of the prostaglandin D_2 receptor CRTH2 (DP₂) (Ulven & Kostenis, 2006).

Experimental

The compound was synthesized as described in Ulven & Kostenis (2005).

Refinement

H atoms bound to C atoms were placed in idealized positions with C—H = 0.95-0.99 Å and refined as riding with $U_{iso}(H)$ = 1.2 or $1.5U_{eq}(C)$. The methyl group was allowed to rotate about its local threefold axis.

Figures

Fig. 1. Molecular structure of the title compound with displacement ellipsoids shown at 50% probability for non-H atoms.

Fig. 2. Packing diagram viewed along the c axis, showing stacked carbazole units. H atoms are omitted.

Ethyl 2-(1,2,3,4-tetrahydrospiro[carbazole-3,2'-[1,3]dioxolan]-9-yl)acetate

Crystal data	
C ₁₈ H ₂₁ NO ₄	$F_{000} = 672$
$M_r = 315.36$	$D_{\rm x} = 1.323 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 7203 reflections
a = 10.5533 (4) Å	$\theta = 2.0 - 28.2^{\circ}$
b = 17.3773 (6) Å	$\mu = 0.09 \text{ mm}^{-1}$

c = 8.9637 (3) Å	T = 180 K
$\beta = 105.629 \ (1)^{\circ}$	Plate, brown
$V = 1583.05 (10) \text{ Å}^3$	$0.50 \times 0.50 \times 0.10 \text{ mm}$
Z = 4	

Data collection

Bruker-Nonius X8 APEXII CCD diffractometer	3851 independent reflections
Radiation source: fine-focus sealed tube	3174 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.025$
T = 180 K	$\theta_{\text{max}} = 28.3^{\circ}$
thin–slice ω and ϕ scans	$\theta_{\min} = 3.5^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)	$h = -13 \rightarrow 13$
$T_{\min} = 0.847, \ T_{\max} = 0.991$	$k = -23 \rightarrow 21$
25055 measured reflections	$l = -11 \rightarrow 11$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.040$	H-atom parameters constrained
$wR(F^2) = 0.112$	$w = 1/[\sigma^2(F_o^2) + (0.0568P)^2 + 0.4296P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\rm max} < 0.001$
3851 reflections	$\Delta \rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$
208 parameters	$\Delta \rho_{min} = -0.25 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	1.21234 (9)	0.15818 (7)	1.12008 (10)	0.0460 (3)

01	0.0307 (5)	0.0794 (7)	0.0284 (5)	0.0149 (5)	0.0090 (4)	0.0144 (4)
	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U ²³
Atomic displac	ement parameters	$(Å^2)$				
H18C	0.2613	0.0729	0.328	5	0.061*	
H18B	0.3534	-0.0006	0.383	5	0.061*	
H18A	0.2259	0.0120	0.445	0	0.061*	
C18	0.29786 (13)	0.03789 (8) 0.415	09 (16)	0.0407 (3)	
H17B	0.4156	0.0477	0.637	7	0.045*	
H17A	0.3230	0.1215	0.582	6	0.045*	
C17	0.37837 (12)	0.08256 (8) 0.549	42 (15)	0.0373 (3)	
C16	0.56219 (11)	0.16596 (6) 0.604	98 (13)	0.0264 (2)	
H15B	0.6361	0.2304	0.454	0	0.035*	
H15A	0.7192	0.1537	0.510	7	0.035*	
C15	0.67326 (11)	0.19717 (7) 0.545	03 (13)	0.0290 (2)	
H14B	1.3704	0.1612	0.874	0	0.048*	
H14A	1.3257	0.2441	0.922	8	0.048*	
C14	1.31189 (12)	0.18790 (9) 0.927	05 (15)	0.0398 (3)	
H13B	1.3950	0.1968	1.163	6	0.058*	
H13A	1.3774	0.1090	1.104	3	0.058*	
C13	1.33628 (14)	0.16069 (1	1) 1.091	53 (17)	0.0486 (4)	
C12	0.86989 (10)	0.21090 (6) 0.776	37 (13)	0.0255 (2)	
H11B	0.8213	0.0977	0.795	8	0.037*	
H11A	0.9359	0.1086	0.710	9	0.037*	
C11	0.90183 (12)	0.12724 (7) 0.797	01 (14)	0.0311 (3)	
H10B	1.0448	0.0631	0.952	6	0.040*	
H10A	0.9625	0.1170	1.037	1	0.040*	
C10	1.00563 (12)	0.11489 (7) 0.951	85 (14)	0.0334 (3)	
C9	1.11382 (11)	0.17469 (7) 0.980	03 (13)	0.0305 (3)	
H8B	1.1296	0.2940	0.982	5	0.039*	
H8A	1.0427	0.2630	1.091	6	0.039*	
C8	1.06186 (12)	0.25587 (8) 0.990	27 (14)	0.0324 (3)	
C7	0.93961 (10)	0.26886 (6) 0.862	64 (13)	0.0256 (2)	
C6	0.87768 (11)	0.33951 (6) 0.801	35 (13)	0.0263 (2)	
H5A	0.9766	0.4316	0.921	9	0.041*	
C5	0.90393 (13)	0.41716 (7) 0.838	33 (15)	0.0339 (3)	
H4A	0.8399	0.5254	0.775	6	0.051*	
C4	0.82262 (15)	0.47257 (8) 0.751	48 (18)	0.0428 (3)	
НЗА	0.6611	0.4912	0.571	9	0.055*	
C3	0.71574 (15)	0.45191 (8) 0.629	15 (18)	0.0459 (3)	
H2A	0.6137	0.3624	0.504	8	0.045*	
C2	0.68683 (13)	0.37599 (8) 0.588	58 (16)	0.0375 (3)	
C1	0.76918 (11)	0.32014 (7) 0.675	50 (13)	0.0271 (2)	
N1	0.76683 (9)	0.24098 (6) 0.660	65 (11)	0.0269 (2)	
O4	0.48419 (8)	0.12028 (5) 0.500	32 (10)	0.0319 (2)	
03	0.54620 (9)	0.18009 (6	0.729	48 (11)	0.0431 (2)	
02	1.17774 (8)	0.16828 (5) 0.859	30 (9)	0.0310(2)	

O2	0.0270 (4)	0.0428 (5)	0.0261 (4)	0.0009 (3)	0.0119 (3)	0.0002 (3)
O3	0.0339 (5)	0.0658 (6)	0.0338 (5)	-0.0159 (4)	0.0163 (4)	-0.0132 (4)
O4	0.0255 (4)	0.0388 (5)	0.0317 (4)	-0.0088 (3)	0.0081 (3)	-0.0039 (3)
N1	0.0220 (5)	0.0306 (5)	0.0275 (5)	-0.0043 (4)	0.0057 (4)	-0.0010 (4)
C1	0.0241 (5)	0.0308 (6)	0.0295 (5)	-0.0023 (4)	0.0126 (4)	0.0011 (4)
C2	0.0323 (6)	0.0439 (7)	0.0371 (6)	0.0055 (5)	0.0106 (5)	0.0077 (5)
C3	0.0507 (8)	0.0371 (7)	0.0540 (8)	0.0124 (6)	0.0211 (7)	0.0119 (6)
C4	0.0532 (8)	0.0284 (6)	0.0553 (8)	0.0005 (6)	0.0294 (7)	-0.0007 (6)
C5	0.0356 (6)	0.0329 (6)	0.0385 (6)	-0.0058 (5)	0.0193 (5)	-0.0072 (5)
C6	0.0247 (5)	0.0302 (6)	0.0280 (5)	-0.0022 (4)	0.0138 (4)	-0.0017 (4)
C7	0.0227 (5)	0.0307 (6)	0.0256 (5)	-0.0016 (4)	0.0100 (4)	-0.0027 (4)
C8	0.0264 (6)	0.0425 (7)	0.0270 (6)	0.0004 (5)	0.0051 (4)	-0.0068 (5)
C9	0.0264 (6)	0.0444 (7)	0.0221 (5)	0.0054 (5)	0.0092 (4)	0.0046 (5)
C10	0.0331 (6)	0.0362 (6)	0.0350 (6)	0.0046 (5)	0.0160 (5)	0.0083 (5)
C11	0.0299 (6)	0.0284 (6)	0.0361 (6)	-0.0026 (4)	0.0109 (5)	-0.0010 (5)
C12	0.0216 (5)	0.0300 (6)	0.0263 (5)	-0.0019 (4)	0.0088 (4)	-0.0005 (4)
C13	0.0301 (7)	0.0766 (11)	0.0369 (7)	-0.0055 (7)	0.0054 (5)	-0.0011 (7)
C14	0.0288 (6)	0.0552 (8)	0.0383 (7)	-0.0054 (6)	0.0142 (5)	-0.0041 (6)
C15	0.0241 (5)	0.0381 (6)	0.0252 (5)	-0.0066 (5)	0.0073 (4)	-0.0031 (5)
C16	0.0204 (5)	0.0315 (6)	0.0265 (5)	-0.0005 (4)	0.0050 (4)	0.0002 (4)
C17	0.0277 (6)	0.0442 (7)	0.0404 (7)	-0.0096 (5)	0.0099 (5)	0.0018 (6)
C18	0.0340 (7)	0.0403 (7)	0.0445 (7)	-0.0114 (5)	0.0049 (5)	0.0023 (6)

Geometric parameters (Å, °)

O1—C13	1.3995 (17)	C8—H8A	0.990
O1—C9	1.4268 (14)	C8—H8B	0.990
O2—C14	1.4233 (15)	C9—C10	1.5140 (18)
O2—C9	1.4254 (13)	C10—C11	1.5340 (17)
O3—C16	1.1982 (14)	C10—H10A	0.990
O4—C16	1.3311 (14)	C10—H10B	0.990
O4—C17	1.4613 (14)	C11—C12	1.4926 (16)
N1—C1	1.3817 (15)	C11—H11A	0.990
N1—C12	1.3872 (14)	C11—H11B	0.990
N1—C15	1.4412 (14)	C13—C14	1.503 (2)
C1—C2	1.3926 (17)	C13—H13A	0.990
C1—C6	1.4146 (16)	С13—Н13В	0.990
C2—C3	1.381 (2)	C14—H14A	0.990
С2—Н2А	0.950	C14—H14B	0.990
C3—C4	1.392 (2)	C15—C16	1.5154 (15)
С3—НЗА	0.950	C15—H15A	0.990
C4—C5	1.382 (2)	C15—H15B	0.990
C4—H4A	0.950	C17—C18	1.4910 (18)
C5—C6	1.3993 (16)	C17—H17A	0.990
С5—Н5А	0.950	С17—Н17В	0.990
C6—C7	1.4293 (16)	C18—H18A	0.980
C7—C12	1.3591 (16)	C18—H18B	0.980
С7—С8	1.4929 (15)	C18—H18C	0.980
C8—C9	1.5252 (18)		

С13—О1—С9	109.16 (9)	H10A—C10—H10B	107.9
C14—O2—C9	106.09 (9)	C12—C11—C10	109.32 (10)
C16—O4—C17	115.65 (9)	C12—C11—H11A	109.8
C1—N1—C12	108.24 (9)	C10-C11-H11A	109.8
C1—N1—C15	125.89 (10)	C12—C11—H11B	109.8
C12—N1—C15	125.87 (10)	C10-C11-H11B	109.8
N1—C1—C2	130.37 (11)	H11A—C11—H11B	108.3
N1—C1—C6	107.66 (10)	C7—C12—N1	109.97 (10)
C2—C1—C6	121.97 (11)	C7—C12—C11	125.57 (10)
C3—C2—C1	117.28 (13)	N1-C12-C11	124.41 (10)
C3—C2—H2A	121.4	O1-C13-C14	105.53 (11)
C1—C2—H2A	121.4	O1-C13-H13A	110.6
C2—C3—C4	121.92 (13)	C14—C13—H13A	110.6
С2—С3—НЗА	119.0	O1—C13—H13B	110.6
С4—С3—НЗА	119.0	C14—C13—H13B	110.6
C5—C4—C3	120.83 (13)	H13A—C13—H13B	108.8
С5—С4—Н4А	119.6	O2—C14—C13	103.35 (10)
C3—C4—H4A	119.6	O2-C14-H14A	111.1
C4—C5—C6	119.03 (12)	C13—C14—H14A	111.1
C4—C5—H5A	120.5	O2—C14—H14B	111.1
С6—С5—Н5А	120.5	C13—C14—H14B	111.1
C5—C6—C1	118.98 (11)	H14A—C14—H14B	109.1
C5—C6—C7	134.14 (11)	N1-C15-C16	112.31 (9)
C1—C6—C7	106.87 (10)	N1-C15-H15A	109.1
C12—C7—C6	107.24 (10)	C16-C15-H15A	109.1
C12—C7—C8	123.20 (11)	N1—C15—H15B	109.1
C6—C7—C8	129.47 (10)	C16—C15—H15B	109.1
С7—С8—С9	110.13 (10)	H15A—C15—H15B	107.9
С7—С8—Н8А	109.6	O3—C16—O4	124.27 (10)
С9—С8—Н8А	109.6	O3—C16—C15	124.99 (10)
С7—С8—Н8В	109.6	O4—C16—C15	110.74 (9)
С9—С8—Н8В	109.6	O4—C17—C18	107.80 (10)
H8A—C8—H8B	108.1	O4—C17—H17A	110.1
O2—C9—O1	105.70 (9)	C18—C17—H17A	110.1
O2—C9—C10	108.03 (10)	O4—C17—H17B	110.1
O1—C9—C10	110.29 (10)	C18—C17—H17B	110.1
O2—C9—C8	111.67 (10)	H17A—C17—H17B	108.5
O1—C9—C8	108.76 (10)	C17—C18—H18A	109.5
С10—С9—С8	112.19 (10)	C17—C18—H18B	109.5
C9—C10—C11	112.18 (10)	H18A—C18—H18B	109.5
C9—C10—H10A	109.2	C17—C18—H18C	109.5
C11—C10—H10A	109.2	H18A—C18—H18C	109.5
C9—C10—H10B	109.2	H18B-C18-H18C	109.5
С11—С10—Н10В	109.2		
C12—N1—C1—C2	-179.74 (11)	C7—C8—C9—O2	76.13 (12)
C15—N1—C1—C2	0.15 (19)	C7—C8—C9—O1	-167.60 (9)
C12—N1—C1—C6	1.15 (12)	C7—C8—C9—C10	-45.32 (13)
C15—N1—C1—C6	-178.96 (9)	O2—C9—C10—C11	-61.20 (12)
N1—C1—C2—C3	-178.46 (12)	O1-C9-C10-C11	-176.27 (9)

C6—C1—C2—C3	0.54 (18)	C8—C9—C10—C11	62.32 (13)
C1—C2—C3—C4	0.1 (2)	C9-C10-C11-C12	-43.12 (13)
C2—C3—C4—C5	-0.5 (2)	C6-C7-C12-N1	0.87 (12)
C3—C4—C5—C6	0.20 (19)	C8—C7—C12—N1	-176.05 (9)
C4—C5—C6—C1	0.41 (16)	C6—C7—C12—C11	178.28 (10)
C4—C5—C6—C7	179.11 (12)	C8—C7—C12—C11	1.36 (17)
N1—C1—C6—C5	178.40 (10)	C1—N1—C12—C7	-1.28 (12)
C2—C1—C6—C5	-0.80 (16)	C15—N1—C12—C7	178.83 (10)
N1—C1—C6—C7	-0.62 (11)	C1—N1—C12—C11	-178.72 (10)
C2—C1—C6—C7	-179.82 (10)	C15—N1—C12—C11	1.39 (16)
C5—C6—C7—C12	-178.95 (12)	C10-C11-C12-C7	12.73 (15)
C1—C6—C7—C12	-0.15 (12)	C10-C11-C12-N1	-170.22 (10)
C5—C6—C7—C8	-2.3 (2)	C9—O1—C13—C14	5.60 (16)
C1—C6—C7—C8	176.51 (11)	C9—O2—C14—C13	31.96 (14)
C12—C7—C8—C9	14.73 (15)	O1—C13—C14—O2	-23.07 (16)
C6—C7—C8—C9	-161.45 (11)	C1-N1-C15-C16	-97.30 (13)
C14—O2—C9—O1	-29.21 (13)	C12-N1-C15-C16	82.58 (13)
C14—O2—C9—C10	-147.26 (10)	C17—O4—C16—O3	-3.87 (17)
C14—O2—C9—C8	88.91 (12)	C17—O4—C16—C15	176.02 (10)
C13—O1—C9—O2	14.11 (14)	N1-C15-C16-O3	5.41 (17)
C13—O1—C9—C10	130.64 (12)	N1-C15-C16-O4	-174.47 (9)
C13—O1—C9—C8	-105.93 (13)	C16—O4—C17—C18	176.84 (10)

Fig. 2

